\(\int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx\) [827]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 115 \[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a d}+\frac {\sec (c+d x)}{a d}+\frac {\sec ^3(c+d x)}{3 a d}+\frac {\sec ^5(c+d x)}{5 a d}-\frac {\tan (c+d x)}{a d}-\frac {2 \tan ^3(c+d x)}{3 a d}-\frac {\tan ^5(c+d x)}{5 a d} \]

[Out]

-arctanh(cos(d*x+c))/a/d+sec(d*x+c)/a/d+1/3*sec(d*x+c)^3/a/d+1/5*sec(d*x+c)^5/a/d-tan(d*x+c)/a/d-2/3*tan(d*x+c
)^3/a/d-1/5*tan(d*x+c)^5/a/d

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {2918, 2702, 308, 213, 3852} \[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\text {arctanh}(\cos (c+d x))}{a d}-\frac {\tan ^5(c+d x)}{5 a d}-\frac {2 \tan ^3(c+d x)}{3 a d}-\frac {\tan (c+d x)}{a d}+\frac {\sec ^5(c+d x)}{5 a d}+\frac {\sec ^3(c+d x)}{3 a d}+\frac {\sec (c+d x)}{a d} \]

[In]

Int[(Csc[c + d*x]*Sec[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

-(ArcTanh[Cos[c + d*x]]/(a*d)) + Sec[c + d*x]/(a*d) + Sec[c + d*x]^3/(3*a*d) + Sec[c + d*x]^5/(5*a*d) - Tan[c
+ d*x]/(a*d) - (2*Tan[c + d*x]^3)/(3*a*d) - Tan[c + d*x]^5/(5*a*d)

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2702

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \sec ^6(c+d x) \, dx}{a}+\frac {\int \csc (c+d x) \sec ^6(c+d x) \, dx}{a} \\ & = \frac {\text {Subst}\left (\int \frac {x^6}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d}+\frac {\text {Subst}\left (\int \left (1+2 x^2+x^4\right ) \, dx,x,-\tan (c+d x)\right )}{a d} \\ & = -\frac {\tan (c+d x)}{a d}-\frac {2 \tan ^3(c+d x)}{3 a d}-\frac {\tan ^5(c+d x)}{5 a d}+\frac {\text {Subst}\left (\int \left (1+x^2+x^4+\frac {1}{-1+x^2}\right ) \, dx,x,\sec (c+d x)\right )}{a d} \\ & = \frac {\sec (c+d x)}{a d}+\frac {\sec ^3(c+d x)}{3 a d}+\frac {\sec ^5(c+d x)}{5 a d}-\frac {\tan (c+d x)}{a d}-\frac {2 \tan ^3(c+d x)}{3 a d}-\frac {\tan ^5(c+d x)}{5 a d}+\frac {\text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,\sec (c+d x)\right )}{a d} \\ & = -\frac {\text {arctanh}(\cos (c+d x))}{a d}+\frac {\sec (c+d x)}{a d}+\frac {\sec ^3(c+d x)}{3 a d}+\frac {\sec ^5(c+d x)}{5 a d}-\frac {\tan (c+d x)}{a d}-\frac {2 \tan ^3(c+d x)}{3 a d}-\frac {\tan ^5(c+d x)}{5 a d} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(267\) vs. \(2(115)=230\).

Time = 1.00 (sec) , antiderivative size = 267, normalized size of antiderivative = 2.32 \[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\sec ^3(c+d x) \left (-100-76 \cos (2 (c+d x))+\frac {149}{4} \cos (3 (c+d x))-8 \cos (4 (c+d x))+30 \cos (3 (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+\cos (c+d x) \left (\frac {447}{4}+90 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-90 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )-30 \cos (3 (c+d x)) \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-22 \sin (c+d x)+\frac {149}{4} \sin (2 (c+d x))+30 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin (2 (c+d x))-30 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (2 (c+d x))-14 \sin (3 (c+d x))+\frac {149}{8} \sin (4 (c+d x))+15 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right ) \sin (4 (c+d x))-15 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right ) \sin (4 (c+d x))\right )}{120 a d (1+\sin (c+d x))} \]

[In]

Integrate[(Csc[c + d*x]*Sec[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

-1/120*(Sec[c + d*x]^3*(-100 - 76*Cos[2*(c + d*x)] + (149*Cos[3*(c + d*x)])/4 - 8*Cos[4*(c + d*x)] + 30*Cos[3*
(c + d*x)]*Log[Cos[(c + d*x)/2]] + Cos[c + d*x]*(447/4 + 90*Log[Cos[(c + d*x)/2]] - 90*Log[Sin[(c + d*x)/2]])
- 30*Cos[3*(c + d*x)]*Log[Sin[(c + d*x)/2]] - 22*Sin[c + d*x] + (149*Sin[2*(c + d*x)])/4 + 30*Log[Cos[(c + d*x
)/2]]*Sin[2*(c + d*x)] - 30*Log[Sin[(c + d*x)/2]]*Sin[2*(c + d*x)] - 14*Sin[3*(c + d*x)] + (149*Sin[4*(c + d*x
)])/8 + 15*Log[Cos[(c + d*x)/2]]*Sin[4*(c + d*x)] - 15*Log[Sin[(c + d*x)/2]]*Sin[4*(c + d*x)]))/(a*d*(1 + Sin[
c + d*x]))

Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.21

method result size
derivativedivides \(\frac {-\frac {1}{6 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {7}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {2}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {23}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d a}\) \(139\)
default \(\frac {-\frac {1}{6 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{4 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {7}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {2}{5 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}-\frac {1}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{4}}+\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}-\frac {2}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {23}{8 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}}{d a}\) \(139\)
risch \(\frac {4 i {\mathrm e}^{6 i \left (d x +c \right )}+2 \,{\mathrm e}^{7 i \left (d x +c \right )}+\frac {40 i {\mathrm e}^{4 i \left (d x +c \right )}}{3}+\frac {14 \,{\mathrm e}^{5 i \left (d x +c \right )}}{3}+\frac {92 i {\mathrm e}^{2 i \left (d x +c \right )}}{15}+\frac {26 \,{\mathrm e}^{3 i \left (d x +c \right )}}{15}+\frac {16 i}{15}+\frac {2 \,{\mathrm e}^{i \left (d x +c \right )}}{15}}{\left ({\mathrm e}^{i \left (d x +c \right )}+i\right )^{5} \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} d a}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d a}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d a}\) \(158\)
parallelrisch \(\frac {15 \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+30 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-30 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-130 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-50 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+146 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+62 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-62 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-46}{15 d a \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}\) \(164\)
norman \(\frac {-\frac {10 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {46}{15 a d}-\frac {2 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}+\frac {2 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d a}-\frac {26 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d a}-\frac {62 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{15 d a}+\frac {62 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}+\frac {146 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d a}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{5}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}\) \(186\)

[In]

int(csc(d*x+c)*sec(d*x+c)^4/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(-1/6/(tan(1/2*d*x+1/2*c)-1)^3-1/4/(tan(1/2*d*x+1/2*c)-1)^2-7/8/(tan(1/2*d*x+1/2*c)-1)+ln(tan(1/2*d*x+1/
2*c))+2/5/(tan(1/2*d*x+1/2*c)+1)^5-1/(tan(1/2*d*x+1/2*c)+1)^4+2/(tan(1/2*d*x+1/2*c)+1)^3-2/(tan(1/2*d*x+1/2*c)
+1)^2+23/8/(tan(1/2*d*x+1/2*c)+1))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.30 \[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {16 \, \cos \left (d x + c\right )^{4} + 22 \, \cos \left (d x + c\right )^{2} - 15 \, {\left (\cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{3}\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 15 \, {\left (\cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + \cos \left (d x + c\right )^{3}\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, {\left (7 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right ) + 8}{30 \, {\left (a d \cos \left (d x + c\right )^{3} \sin \left (d x + c\right ) + a d \cos \left (d x + c\right )^{3}\right )}} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/30*(16*cos(d*x + c)^4 + 22*cos(d*x + c)^2 - 15*(cos(d*x + c)^3*sin(d*x + c) + cos(d*x + c)^3)*log(1/2*cos(d*
x + c) + 1/2) + 15*(cos(d*x + c)^3*sin(d*x + c) + cos(d*x + c)^3)*log(-1/2*cos(d*x + c) + 1/2) + 2*(7*cos(d*x
+ c)^2 + 1)*sin(d*x + c) + 8)/(a*d*cos(d*x + c)^3*sin(d*x + c) + a*d*cos(d*x + c)^3)

Sympy [F]

\[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\int \frac {\csc {\left (c + d x \right )} \sec ^{4}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)**4/(a+a*sin(d*x+c)),x)

[Out]

Integral(csc(c + d*x)*sec(c + d*x)**4/(sin(c + d*x) + 1), x)/a

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 320 vs. \(2 (107) = 214\).

Time = 0.25 (sec) , antiderivative size = 320, normalized size of antiderivative = 2.78 \[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {2 \, {\left (\frac {31 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {31 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {73 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {25 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {65 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {15 \, \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {15 \, \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} + 23\right )}}{a + \frac {2 \, a \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {2 \, a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {6 \, a \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {6 \, a \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {2 \, a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {2 \, a \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {a \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}}} + \frac {15 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{15 \, d} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/15*(2*(31*sin(d*x + c)/(cos(d*x + c) + 1) - 31*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 73*sin(d*x + c)^3/(cos(
d*x + c) + 1)^3 + 25*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + 65*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 + 15*sin(d*x
 + c)^6/(cos(d*x + c) + 1)^6 - 15*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 + 23)/(a + 2*a*sin(d*x + c)/(cos(d*x + c
) + 1) - 2*a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 6*a*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 6*a*sin(d*x + c)^
5/(cos(d*x + c) + 1)^5 + 2*a*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 2*a*sin(d*x + c)^7/(cos(d*x + c) + 1)^7 - a
*sin(d*x + c)^8/(cos(d*x + c) + 1)^8) + 15*log(sin(d*x + c)/(cos(d*x + c) + 1))/a)/d

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.18 \[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {120 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} - \frac {5 \, {\left (21 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 36 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 19\right )}}{a {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}} + \frac {3 \, {\left (115 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 380 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 530 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 340 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 91\right )}}{a {\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}^{5}}}{120 \, d} \]

[In]

integrate(csc(d*x+c)*sec(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/120*(120*log(abs(tan(1/2*d*x + 1/2*c)))/a - 5*(21*tan(1/2*d*x + 1/2*c)^2 - 36*tan(1/2*d*x + 1/2*c) + 19)/(a*
(tan(1/2*d*x + 1/2*c) - 1)^3) + 3*(115*tan(1/2*d*x + 1/2*c)^4 + 380*tan(1/2*d*x + 1/2*c)^3 + 530*tan(1/2*d*x +
 1/2*c)^2 + 340*tan(1/2*d*x + 1/2*c) + 91)/(a*(tan(1/2*d*x + 1/2*c) + 1)^5))/d

Mupad [B] (verification not implemented)

Time = 14.15 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.24 \[ \int \frac {\csc (c+d x) \sec ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d}-\frac {-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\frac {26\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{3}+\frac {10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{3}-\frac {146\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{15}-\frac {62\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{15}+\frac {62\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{15}+\frac {46}{15}}{a\,d\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}^3\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )}^5} \]

[In]

int(1/(cos(c + d*x)^4*sin(c + d*x)*(a + a*sin(c + d*x))),x)

[Out]

log(tan(c/2 + (d*x)/2))/(a*d) - ((62*tan(c/2 + (d*x)/2))/15 - (62*tan(c/2 + (d*x)/2)^2)/15 - (146*tan(c/2 + (d
*x)/2)^3)/15 + (10*tan(c/2 + (d*x)/2)^4)/3 + (26*tan(c/2 + (d*x)/2)^5)/3 + 2*tan(c/2 + (d*x)/2)^6 - 2*tan(c/2
+ (d*x)/2)^7 + 46/15)/(a*d*(tan(c/2 + (d*x)/2) - 1)^3*(tan(c/2 + (d*x)/2) + 1)^5)